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A study of the higher order Lamb resonances on elastic shells: their prediction and interpretation

M. F. Werby and M. K. Broadhcad
Naval Research Laboratory
Stennis Space Center, MS 39529

ABSTRACT

We study all the resonances generated on elastic shells for a ka from 0 to 500 for stecl and aluminum for a
thickness of 5%. We observe the lowest order symmetric and antisymmetric model or Lamb resonances, waterborne
and pseudo-Stoneley resonances and the higher order Lamb modes A; and S; where i=1,2,3 .. .. We plot some of
the phase velocities of some of the relevant resonances out to a ka of 500 and indicate simplc expressions that
predict the onset of each of the resonances. We demonstrate by use of partial v ave analysis that the new expressions
that predict the onset (critical frequencies) of the higher order Lamb modes are reliable. Further, interesting
phenomena occur at the inception of some of the resonances and we discuss some of those cases.

1. INTRODUCTION

The presence of resonances generated from acoustical signals impinging on submerged evacuated clastic shells
has been known for some time. In particular, the presence of the symmetric or dilatational Lamb mode Sy as well
as the lowest order antisymmetric Lamb or Flexural mode Ag are well know and frequently studied. Morcover, the
existence of higher order symmetric S; and antisymmetric A, Lamb modes (i>0) manifcst themselves with increasing
frequency. In addition, newly studicd phenomena such as pscudo-Stoneley resonances and pure waterborne waves
have received attention recently.! All but the last phenomena have analogues for the infinite flat plate case which
is fluid loaded on one side and evacuated on the other.

It i5 usual to associate resonances with vibrations, and the presence of the Lamb resonances on spherical shells
can be associated with symmetric or antisymmelric vibrations that at discrete frequencies form standing waves on
the object surface. These standing waves radiate into the fluid and add coherently with the specularly scattered
signal praducing a characteristic signature. The naturc and appearance of the resonances just described are a function
of material characteristics and shell thickness in addition 1o frequency. For very thin shells the lowest order reso-
nance has a large amplitude and is in a region where there is a large recoit cffect leading to both a large monopole
term as well as the dipole term associated with the recoil effect. The subsequent symmetric Lamb modes are
characterized by a sharp minimum followed by a sharp risc and then a return to & normal slowly varying back
scattered return signal (form function). Flexural or antisymmetric resonances do not arise until the flexural phase
velocity equals the speed of sound in the fluid (subsonic material waves are too heavily dampened o be observed):
this value of frequency is referred to as coincidence frequency.2-3 At and a little below coincidence frequency
another phenomenon enters the picture, namely sharply defined watcrborne waves which have their analogue in flat
plates, namely Stoneley waves.d Thus, the resonances that arise from these waterborne waves are labeled pscudo-
Stoncley resonances.? S They occur only in the {requency region about coincidence frequency and give rise to very
sharp spikes superimposcd on broadly overlapping flexural resonances. This effect can be very dramatic. Another
dramatic effect arises from the Sy symmetric resonance which is a separate topic presented at the 92 SPIE conference
by Ali, Werby, and Gaunaurd.$ Interestingly the onset of all of the higher order Lamb resonances can be obtained
fr?m the simple expressions used to predict the critical frequencics for the flat plate casc. We will demonsuate
this effect by employing the residual partial wavc analysis (thc partial wave component minus the exact
acon.tical background for a shell). It is only possible 10 perform the correct partial wave analysis if one has the
correct background for the elastic shell. Thus we discuss it in the next scction.
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2. THE NEW ACOUSTIC BACKGROUND FOR SUBMERGED ELASTIC SHELLS

The rigid background concept for clastic solid targets in which the towl clastic response is viewed as a superposition
of a resonance response and a nonresonant acoustical background! (rigid for solid elastic targets) has proven quite
successful as the “correct” background for elastic solids submerged in water. An analogous background for the
elastic shell problem has proven more elusive to find. Earlier work? has shown that for very thin shells a soft
background is useful in extracting the elastic residual, but for shells of greater thickness and at high frequencies,
a rigid background has proven suitable. It has also been demonstrated that for some cases a soft background was
suitable at the lower frequency limit and that a rigid background was suitable at the higher frequency limit for the
same target. Here a model! is outlined to describe acoustic scatiering from an elastic shell in the absence of reso-
nances. We then use it to better isolate resonances in the subsequent study.’

The inertial component of the radiation loading of a spherical shell at the surface is in the form:#

P, = —iv ¥ M,W,P(1), )
i =0

where M, = — B 1m (x‘ h—"(ifi)—-J
: k h'y(ka)

Here, M, is the entrained mass per unit arca for mode n, @ is the angular frequency, p the density of a fluid,

P, (1) is an associated Legendre polynomial evaluated at 180 degrees, & is the wave number, and A, is an outgoing

spherical Hankel Function. Here W, is an expansion cocfficient related to the displacement potential. If we excite

the sphere by an incident monochromatic plane wave, then we have

‘W,o=-iw a,(j,{ka) + b, h, (ka)) exp(~iwt) ,

where j, is a regular Bessel function and b, is an unknown coefficient which corresponds to the partial wave
scattering amplitude which we seek. Here, a, is the planc wave expansion cocfficient. The total pressure per unit
area in the fluid due to the incident plane wave is

po= O 5, (j.(kr) + b,h,(m).vfmcxp (o). )

a n=0

The particle velocity at the surface of the object is:

Here, ¢ is the speed of sound in water. The particle acceleration a is the time derivative of v which Jeads 1o:

2 -

= Ekl Y a, (j‘,.(kr) . b,,,(kr)h',,(kr))i’f(l)cxp (—iwr) . ©)
2 n=0

The force at the surface of the object due to the incident plane wave is, then, simply the product of the particle
acceleration and the mass of the spherical shell. The mass of the spherical shell is 4xp,@3[1- (1 - £)*}/2 Here h is
the ratio of the shell thickness to the shell radius. The force due 10 the total fluid loading at the object surface
is equal to the total inertial fluid loading times the surface area 4na? of the sphere. Here, a is the radius of the
spherical shell and p, is the density of the shell material. We equatc these two forces to oblain the unknown
coefficient b, which leads to the following expression.
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The scattered field for the new background is obtained by using the b,'s as the partial wave scattering amplitudes
in a normal mode series. The b,’s define the new background and by subtracting this quantity from the clastic
response, we obtain the residual response that reflects mainly the pure resonance contribution. It is easy to show
that the imaginary part of the enclosed brackets in Eq. 4 is approximately equal to ka/(1+ka?) so that for large
Xa, b, = ~',(ka)/h' (ka) which corresponds to a rigid scatterer and for both a very thin shell and at low frequency,
b, = ~ja(ka)/h(ka) which corresponds to a soft scatterer. Thus we see that the background represented by Eq. 4
has the appropriate limits for thin shells at low frequencies (soft) as well as the appropriatc limits for high
frequencies (rigid). .

2.1 The form functions for aluminum and steel for ka from 0 to 500

We illustrate in this section the form function for 5% thick Aluminum and Steel shells. Figure la-d represent
backscatter from aluminum 1(a) from ka=0 10 250, 1(b) the residual results (with background subtracted) from 0 to
250, 1(c) for aluminum from 250 to 500, and 1(d) the residual for aluminum from 250 to 500. Figure 2a—d represent
backscatter from steel 2(a) from ka=0 to 250, 2(b) the residual results from 0 to 250, 2(c) for steel from 250 to 500,
and 2(d) the residual for steel from 250 to 500. It is clear that a great deal of detail is present in each of the plots.
The low frequency large returns with the sharp spikes for both materials are due to a superposition of the pscudo-
Sioneley resonances with the weaker broadly overlapping flexural resonances. The higher frequency resonances
(about ka=250 in both cases) are due to the onsct of the S, Lamb mode. We have indicated in the plots the onsct
of each of the modes.

2.2 Discussion of pure waterborne waves

We have earlier discussed pseudo-Stoneley waves. There is another phenomenon!® ! that corresponds to waves
that have a phase velocity that is about the speed of sound in water. They are not, however, sharply dcfined in partial
wave space, nor are they associated with the flexural wave or coincidence frequency. They arc associated with the
density of the material, and the thickness (rcally just the mass of the target) and the frequency. Their importance
increases with frequency and they do not manifest themselves as sharp resonances in the form function but rather
wash out other resonances such as Sy and A, resonances. Thus for light material and thin shells such as aluminum

and at high frequency one does not observe sharp resonances due 1o this wash out effect. We will not discuss this
effect here.

2.3 A partial wave analysis

If one subtracts the correct background from the elastic responsc then by definition onc is left with the “pure”
resonance response. Resonances excited on bodies of canonical shape usually correspond to circumferentially excited
waves which for spheres have a unique wave number. To be sure, this fact can be obscured by, for example, broadly
cverlapping partial waves; but none the less plotting the residual partial wave components—which is here referred
oasa partial wave analysis-can be very revealing. There are two ways to perform a partial wave analysis: onc can
fix the mode number N and plot the residual response with respect to ka. On the other hand ene can [ix ka and plot
the partial wave function with respect to mode number N, The first of these approaches is the most commonly used.

Figyre 3a-c illustrates the PWA for 5% thick aluminum shells out to a ka of 500 for modes 1, 2, and 10. We
have listed the onset of the different Lamb modes in Table 1 and indicated with arrows in the plots here the critical
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frequencies for each case. The same has been done for steel in Figure 4a—c. It is clear that the simple expressions
listed in Table 1 and the computed values agree with the onset of the higher order Lamb modes.

2.4 Phase velocity plots

We have included in this work the phase velocitics for the stecl shell illustrated in Figure 5. Here we include the
pseudo-Stoneley resonance (Fig. 5a), the pure waterborne wave (Fig. 5b), the Ag resonance (Fig. 5¢), the S, reso-
nance (Fig. 5d), the A, resonance (Fig. 5e), the S, resonance (Fig. 5f), the S, resonance {Fig. 5g), the A, resonance,
(Fig. 5h), and the A, resonance (Fig. 5i). Note that the onset of each of the higher order Lamb resonances conforms
to the values listed in Table 1. Further note that the S; resonance has a phase velocity that in effect decreases at
some point (early on) then increases and then decreases again.

3. CONCLUSION

This is only a preliminary study of a large ongoing study of Lamb resonances. It is cncouraging that most cffects
are easily understood in terms of flat plate theory and that the critical frequencics can be predicted by such simple
expressions. Further some of the more dramatic effects such as the pscudo-Stoneley resonances?™3 and thosc duc to

“the S, resonance$ ! can be inerpreted.
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Fig. 1. (a) Backscatter from 5% aluminum shell from ka =0 to 250; (b) residual backscatier for casc la;
(¢) backscaiter from 5% aluminum shell from ka = 250 1o 500; and (d) residual backscatter for case lc.
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